WARNING: DISCONNECT APPLIANCE FROM MAINS BEFORE USING TEST PROCEDURE SET THE MULTIMETER TO MEASURE RESISTANCE - $\boldsymbol{\Omega}$

For identification, refer to the schematic and wiring diagrams.

Function	Action	Expected Readings	Possible Fault
POT (Potentiometer) Variable resistor within Speed Control On 5-pin connector, measure pins 1 & 2	Set the Speed Control to the three settings, and check. Check for a smooth resistance change as the Control is slowly rotated (use an analogue meter?)	"P": 320Ω to 360Ω "0": 1700Ω to 2000Ω "MAX": 9900Ω to 10200Ω Smooth change in resistance as Control is rotated.	Speed Control PCB or Speed Control Module mechanical parts
STBY (Standby Switch) "Standby" push switch (centre of Speed Control) On 5-pin connector, measure pins 4 & 2	Check resistance when at rest and also when held depressed.	At rest: $7.2 \text{ k}\Omega$ to $7.8 \text{k}\Omega$ When depressed: s/c	Speed Control PCB or Speed Control Module mechanical parts
HL (Head Lift) Head lift sensing switch On headlift connector.	Check that switch operates when the head is moved up from its locked position. Check that its resistance value remains constant when the head is locked down.	Head locked down: s/c Head not in 'locked down' position: o/c	Head Lift Switch or Locking Mechanism (Head Lift assembly)
SPEED COIL Motor shaft speed sensor On motor sensor connector, measure the white wire.	Check that the resistance of the motor shaft speed sensor is within limits.	50 Ω to 70 Ω	Speed Coil (part of motor assembly)
NTC Motor winding temperature sensor On motor sensor connector, measure the blue wire.	Check that the resistance of the NTC fitted to the motor coil windings corresponds with the actual motor temperature.	Refer to table below	NTC (part of motor assembly)
MOTOR Motor resistance (as seen by the electronics) On the main motor winding, measure the yellow and blue wires	Check that the resistance across the motor is within limits, at all rotational positions.	10 Ω to 50 Ω	Motor

Note that the wire crimps of any cable connectors may also be considered as possible fault points.

o/c = open circuit resistance expected (greater than 1 $M\Omega$).

s/c = short circuit resistance expected (less than 4 Ω).

Motor	Nominal NTC
Temperature (°C)	Resistance (KΩ)
15	160
20	125
25	100
30	80
35	65
40	53
50	36

Motor	Nominal NTC
Temperature (°C)	Resistance (KΩ)
60	25
70	17
80	12.5
90	9-1
100	6.7
110	5
120	3.8